MATH1205H HW19
Exercise 1 根据分块对角矩阵的性质,秩等于对角线上各个子块的秩之和,因此 $$ \text{rank}(AB)+n = \text{rank}\left(\begin{bmatrix} AB & 0 \\ 0 & I \end{bmatrix}\right) $$ 接着由于初等列变换不改变矩阵的秩,将第二列右乘 $ B $ 加到第一列得到 $$ \text{rank}\left(\begin{bmatrix} AB & 0 \\ 0 & I \end{bmatrix}\right) = \text{rank}\left(\begin{bmatrix} AB & 0 \\ B & I \end{bmatrix}\right) $$ 同样由于初等行变换也不改变矩阵的秩,将第二行左乘 $ A $ 再和第一行相减,得到 $$ \text{rank}\left(\begin{bmatrix} AB & 0 \\ B & I \end{bmatrix}\right) = \text{rank}\left(\begin{bmatrix} 0 & -A \\ B & I \end{bmatrix}\right) $$ 交换上下两行,得到 $$ \text{rank}\left(\begin{bmatrix} 0 & -A \\ B & I \end{bmatrix}\right) = \text{rank}\left(\begin{bmatrix} B & I \\ 0 & -A \end{bmatrix}\right) $$ 第二行乘以 $ -1 $ 就得到了 $$ \text{rank}\left(\begin{bmatrix} B & I \\ 0 & -A \end{bmatrix}\right) = \text{rank}\left(\begin{bmatrix} B & -I \\ 0 & A \end{bmatrix}\right) $$ 再根据上三角分块矩阵的性质,就有 $$ \text{rank}\left(\begin{bmatrix} B & -I \\ 0 & A \end{bmatrix}\right) \geq \text{rank}(A) + \text{rank}(B) $$ ...