MATH1205H HW13
Exercise 1 证 我们有 $ \det(A^{T})=\det(-A) $,同时又有 $ \det(A^{T})=\det A $ 以及 $ \det(-A)=(-1)^{n}\det A $。 如果 $ n $ 是奇数,那么 $ (-1)^{n}=-1 $,从而得到 $ \det A=-\det A\implies \det A=0 $。如果 $ n $ 是偶数,则无法说明,这个结论必然成立。 Exercise 2 解 我们直接展开计算,就可以得到 $$ \begin{align*} \det & = \begin{vmatrix} b & b^{2} \\ c & c^{2} \end{vmatrix} - a\begin{vmatrix} 1 & b^{2} \\ 1 & c^{2} \end{vmatrix} + a^{2}\begin{vmatrix} 1 & b \\ 1 & c \end{vmatrix} \\ & = (bc^{2}-b^{2}c) - a(c^{2}-b^{2}) + a^{2}(c-b) \\ & = (b-a)(c-a)(c-b) \end{align*} $$ ...