18. 真实世界的并发编程 (1)
并发编程的核心抽象是实现一个计算图,计算发生在节点上,边表示节点之间的依赖关系,同时计算图在运行时可能是动态变化的 使用条件变量、锁、信号量等 api 去实现计算图并不是一个优雅的实现方式,因为这样会在代码中引入众多干扰代码,也可能导致一些问题 为此可以增加一些功能受限的语法,可以在同样描述计算图的功能下减少了许多潜在的问题 高性能计算中的并行编程 在高性能计算中,计算图通常易于静态切分,尤其适用于物理模拟的网格划分,为此 HPC 发展出多种高效的并行编程模型,具体学习可以参考 SJTU HPC 学习手册 MPI: 分布式内存并行 每个 MPI 进程有独立的内存空间,进程间通过显式消息传递(发送/接收)交换数据 OpenMP: 共享内存并行 多个线程在同一地址空间中并行执行,所有线程可以直接访问相同的数据,使用 #pragma omp 指令实现并行化 对非计算机专业来说非常友好,只需要在正常的代码上面加上编译指令即可,能轻松实现高效的并行优化 CUDA: GPU 异构并行 CPU 调度,GPU 执行大规模并行计算 概念: 核函数 (Kernel) :在 GPU 上并行执行的函数 线程层次:线程 (threadIdx) 组成线程块 (blockIdx),线程块组成网格 (gridDim) 内存层次:寄存器、共享内存(块内高速)、全局内存(所有线程可访问) 我们身边的并发编程 从 Web 1.0 到 Web 2.0 在 Web 时代用的最广泛的是 Javascript Asynchronous JavaScript and XML (Ajax; ~1999) 允许网页实现“后台刷新” jQuery $ (2006): A DOM Query Language (编程抽象) Web 2.0 时代的并发编程 线程开销大,并且大多数 Web 开发者难以进行并发编程 ...