CS0901 HW10
Problem 1 设 $ H = (V, \mathcal{F}) $ 是一个没有孤立点的超图,满足每条超边至少包含 3 个顶点,且任意两条超边恰好共享一个顶点。假设 $ H $ 不是 2-可着色的(即不能用两种颜色对顶点染色使得每条超边内都有不同颜色的点)。 (1) 证明每个顶点 $ v $ 至少属于 $ \mathcal{F} $ 中的两条超边。 证 假设存在一个顶点 $ v $ 满足 $ d(v)< 2 $。由于没有孤立顶点,因此 $ d(v)=1 $,恰好属于一条超边,记为 $ E $。 我们将顶点 $ v $ 染成红色,将 $ E $ 中的其他点染成蓝色,再将图中除了 $ E $ 之外的所有点染成红色。由于任意两条超边恰好共享一个顶点,并且 $ v $ 只在 $ E $ 中,所以任意一条超边必然和 $ E $ 存在蓝色交点,存在颜色不同的点。因此我们就构造出了一个合法的 2-着色方案,与题设矛盾。 因此每个顶点至少属于两条超边。证毕。 ...