MATH1205H HW1
Exercise 1 Let $ f:\mathbb{R}\to\mathbb{R} $ be a function. Prove that the following are equivalent: (i) There is a constant $ a\in\mathbb{R} $ such that for every$ x\in\mathbb{R} $ we have$ f(x)=ax $. (ii) For all $ x_1,x_2,c,x\in\mathbb{R} $ we have $ f(x_1+x_2)=f(x_1)+f(x_2) $ and $ f(cx)=c\,f(x) $. (i ⇒ ii) Assume there exists $ a\in\mathbb{R} $ such that $ f(x)=a x $ for all $ x\in\mathbb{R} $ . Then for any $ x_1,x_2,c,x\in\mathbb{R} $ , ...