MATH1205H HW3
Exercise 1 (Multiplication of block matrices). Consider two block matrices $$ A = \begin{pmatrix} A_{11} & \cdots & A_{1t} \\ \vdots & \ddots & \vdots \\ A_{p1} & \cdots & A_{pt} \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} B_{11} & \cdots & B_{1q} \\ \vdots & \ddots & \vdots \\ B_{t1} & \cdots & B_{tq} \end{pmatrix} $$ Moreover, for every $ i \in [p] $, $ j \in [t] $, and $ l \in [q] $ the number of columns of $ A_{ij} $ is equal to the number of rows of $ B_{jl} $. In particular, $ A_{ij} \cdot B_{jl} $ is defined. Prove that $$ A \cdot B = \begin{pmatrix} C_{11} & \cdots & C_{1q} \\ \vdots & \ddots & \vdots \\ C_{p1} & \cdots & C_{pq} \end{pmatrix} $$ with $$ C_{il} = \sum_{j \in [t]} A_{ij} B_{jl} $$ for any $ i \in [p] $ and $ l \in [q] $. ...