MATH1205H HW8
Exercise 1 先证明行阶梯矩阵中主元列的唯一性。由于初等行变换保持了列向量之间的线性关系,因此如果矩阵 $ A $ 的第 $ j $ 列是前 $ j-1 $ 列的线性组合,初等行变换之后也仍然成立。并且一个列为主元列,当且仅当它不能被前面的列线性表示,所以 $ A_{1} $ 和 $ A_{2} $ 中的主元列位置完全相同。 接着证明简化行阶梯矩阵的唯一性。对于每个主元列 $ j_{k} $,必须化简成单位向量 $ e_{k} $,满足主元为 $ 1 $,其余元素为 $ 0 $,具有唯一性;对于非主元列,可以表示为前面的列的线性组合,所以为 $ 0 $,也具有唯一性。因此简化行阶梯矩阵具有唯一性。 Exercise 2 (1) 我们通过选择 $ W=\text{span}\{ v_{1},v_{2},\dots,v_{n} \} $ 中的一个子集,可以构造出 $ W $ 的一个基。我们依次考虑 $ i=1,2,\dots,n $,如果 $ i=1 $ 或者 $ v_{i} $ 不是前 $ i-1 $ 个向量的线性组合,就选择 $ v_{i} $,这样最终就得到了 $ B=\{ v_{i_{1}},v_{i_{2}},\dots,v_{i_{r}} \} $。 ...