MATH1205H HW15

Exercise 2 先证充分性。如果 $ G $ 是一个二分图,设两部分的点集分别为 $ L,R $,所有边均满足两端点分别在 $ L,R $ 中。反证法,加入存在奇环,设环中第一和最后一个点分别为 $ v_{1},v_{k} $,那么 $ k $ 为奇数。不妨设 $ v_{1}\in L $,由于一条边必然在 $ L,R $ 两部分之间 ,所以环中的点在 $ L,R $ 交替出现,即 $ v_{2}\in R,v_{3}\in L,\dots $,由于 $ k $ 是奇数,因此 $ v_{k}\in L $。这说明 $ v_{1},v_{k} $ 两个 $ L $ 中的点存在连边,与二分图矛盾。因此二分图中没有奇环。 再证必要性。如果 $ G $ 没有奇环,我们可以将 $ G $ 分成若干个连通块,每个连通块中任取一个点 $ u_{i} $,我们按照一下顺序将所有点分成 $ L,R $ 两组:首先令 $ u_{i}\in L $,将所有与 $ u_{i} $ 最短距离为偶数的点加入 $ L $,其余的点,也就是到 $ u_{i} $ 最短距离为奇数的点加入 $ R $。 ...

November 13, 2025 · 4 min · diefish

MATH1205H HW14

Exercise 1 首先计算 $ A $ 的特征值和特征向量。 $$ \det(A-\lambda I) = (-1-\lambda)(-\lambda)-6 = 0 \implies \lambda^{2}+\lambda-6 = 0 $$ 解得 $ \lambda_{1}=2,\lambda_{2}=-3 $。 对于 $ \lambda_{1}=2 $,我们求解 $ (A-2I)x=0 $,特征向量为 $$ x_{1} = k\begin{pmatrix} 1 \\ 1 \end{pmatrix} $$ 对于 $ \lambda_{2}=-3 $,我们求解 $ (A+3I)x=0 $,可以取特征向量为 $$ x_{2} = k\begin{pmatrix} 3 \\ -2 \end{pmatrix} $$ 对于 $ A^{2} $,我们计算得到 $ \mu_{1}=4,\mu_{2}=9 $。对于每个特征值,带入解出 $$ x_{1} = k\begin{pmatrix} 1 \\ 1 \end{pmatrix},x_{2} = k\begin{pmatrix} 3 \\ -2 \end{pmatrix} $$ ...

November 9, 2025 · 5 min · diefish

MATH1205H HW13

Exercise 1 证 我们有 $ \det(A^{T})=\det(-A) $,同时又有 $ \det(A^{T})=\det A $ 以及 $ \det(-A)=(-1)^{n}\det A $。 如果 $ n $ 是奇数,那么 $ (-1)^{n}=-1 $,从而得到 $ \det A=-\det A\implies \det A=0 $。如果 $ n $ 是偶数,则无法说明,这个结论必然成立。 Exercise 2 解 我们直接展开计算,就可以得到 $$ \begin{align*} \det & = \begin{vmatrix} b & b^{2} \\ c & c^{2} \end{vmatrix} - a\begin{vmatrix} 1 & b^{2} \\ 1 & c^{2} \end{vmatrix} + a^{2}\begin{vmatrix} 1 & b \\ 1 & c \end{vmatrix} \\ & = (bc^{2}-b^{2}c) - a(c^{2}-b^{2}) + a^{2}(c-b) \\ & = (b-a)(c-a)(c-b) \end{align*} $$ ...

November 7, 2025 · 2 min · diefish

MATH1205H HW12

Exercise 1 解 根据题设,平面法向量为 $ \mathbf{n}=(1,1,2) $。我们观察出一组解 $ v_{1}=(1,-1,0) $,再取 $$ v_{2} = \mathbf{n}\times v_{1} = (2,2,-2) $$ 单位化得到 $$ e_{1} = \dfrac{1}{\sqrt{ 2 }}(1,-1,0),\quad e_{2} = \dfrac{1}{\sqrt{ 3 }}(1,1,-1) $$ Exercise 2 (1) 我们取 $ q_{1}=(1,3,4,5,7) $,利用 G-S 正交化,得到 $$ q_{2} = \mathbf{b} - \dfrac{q_{1}\cdot \mathbf{b}}{\| q_{1} \| ^{2}}q_{1} = (-7,3,4,-5,1) $$ 再单位化得到 $$ \mathbf{e}_{1} = \dfrac{1}{10}(1,3,4,5,7),\quad \mathbf{e}_{2} = \dfrac{1}{10}(-7,3,4,-5,1) $$ (2) 实际上只需要求 $ y $ 到平面的投影。根据 $ (1) $ 我们得到的一组标准正交基,我们就有投影为 $$ p = (y\cdot e_{1})e_{1} + (y\cdot e_{2})e_{2} = \dfrac{1}{10}e_{1} - \dfrac{7}{10}e_{2} = \left( \dfrac{1}{2},-\dfrac{9}{50},-\dfrac{6}{25},\dfrac{2}{5},0 \right) $$ ...

November 4, 2025 · 4 min · diefish

MATH1205H HW11

Exercise 1 (1) 如果 $ A=B $,那么 $ Ax=Bx $ 对于所有 $ x \in \mathbb{R}^{n\times 1} $ 是显然的。 如果 $ \forall x \in \mathbb{R}^{n\times 1} $,都有 $ Ax=Bx $,那么我们有 $ (A-B)x=0 $。由于 $ x $ 是 $ \mathbb{R}^{n} $ 中的任意一个向量,说明 $ A-B $ 的零空间是 $ \mathbb{R}^{n} $,因此 $ \text{rank}(A-B)=0 $,也就有 $ A-B=0 $,从而 $ A=B $。 (2) $ A(A^{T}A)^{-1}A^{T} $ 和 $ B(B^{T}B)^{-1}B^{T} $ 分别是 $ A $ 和 $ B $ 的投影矩阵,记为 $ P_{A},P_{B} $。 ...

October 31, 2025 · 3 min · diefish

MATH1205H HW10

Exercise 1 (1) $$ u\cdot v = v\cdot u = \sum_{i=1}^{m} v_{i}w_{i} $$ (2) $$ (u+v)\cdot w = u\cdot w + v\cdot w = \sum_{i=1}^{m} (v_{i}+u_{i})w_{i} $$ (3) $$ cu\cdot v = c(u\cdot v) = \sum_{i=1}^{m} (c\cdot u_{i}v_{i}) $$ (4) $$ u\cdot u = \sum_{i=1}^{m} u_{i}^{2} \geq 0 $$ 若 $ u\cdot u = 0 $,可以得到 $ u_{i}=0 $,从而 $ u=\mathbf{0} $。 Exercise 2 $$ u\perp v \implies u\cdot v = \sum_{i=1}^{m} u_{i}v_{i} = 0 $$ 从而 $$ \begin{align*} \| u+v \| ^{2} & = \sum_{i=1}^{m} (u_{i}+v_{i})^{2} \\ & = \sum_{i=1}^{m} u_{i}^{2} + \sum_{i=1}^{m} v_{i}^{2} + 2\sum_{i=1}^{m} u_{i}v_{i} \\ & = \sum_{i=1}^{m} u_{i}^{2} + \sum_{i=1}^{m} v_{i}^{2} \\ & = \| u \| ^{2} + \| v \| ^{2} \end{align*} $$ ...

October 27, 2025 · 3 min · diefish

MATH1205H HW9

Exercise 1 (1) 若 $ x \in \mathcal{N}(A) $,说明 $ Ax=0 $,从而一定有 $ BAx=0 $,这就得到了 $ x \in \mathcal{N}(BA) $,因此 $$ \mathcal{N}(A) \subseteq \mathcal{N}(BA) $$ (2) 当 $ \text{rank}(B)=n $,设 $ x \in \mathcal{N}(BA) $,此时有 $ BAx=0 $。由于 $ \text{rank}(B)=n $,因此我们可以得到 $ Ax=0 $,从而 $$ x \in \mathcal{N}(A) $$ 于是必然有 $ \mathcal{N}(A)=\mathcal{N}(BA) $。 如果 $ \mathcal{N}(A)=\mathcal{N}(BA) $,并不能推出 $ \text{rank}(B)=n $。我们可以构造出反例 $$ A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix},\quad B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} $$ 显然这时 $ A=BA $,结论成立,但是 $ B $ 不满秩。 ...

October 26, 2025 · 3 min · diefish

MATH1205H HW8

Exercise 1 先证明行阶梯矩阵中主元列的唯一性。由于初等行变换保持了列向量之间的线性关系,因此如果矩阵 $ A $ 的第 $ j $ 列是前 $ j-1 $ 列的线性组合,初等行变换之后也仍然成立。并且一个列为主元列,当且仅当它不能被前面的列线性表示,所以 $ A_{1} $ 和 $ A_{2} $ 中的主元列位置完全相同。 接着证明简化行阶梯矩阵的唯一性。对于每个主元列 $ j_{k} $,必须化简成单位向量 $ e_{k} $,满足主元为 $ 1 $,其余元素为 $ 0 $,具有唯一性;对于非主元列,可以表示为前面的列的线性组合,所以为 $ 0 $,也具有唯一性。因此简化行阶梯矩阵具有唯一性。 Exercise 2 (1) 我们通过选择 $ W=\text{span}\{ v_{1},v_{2},\dots,v_{n} \} $ 中的一个子集,可以构造出 $ W $ 的一个基。我们依次考虑 $ i=1,2,\dots,n $,如果 $ i=1 $ 或者 $ v_{i} $ 不是前 $ i-1 $ 个向量的线性组合,就选择 $ v_{i} $,这样最终就得到了 $ B=\{ v_{i_{1}},v_{i_{2}},\dots,v_{i_{r}} \} $。 ...

October 21, 2025 · 5 min · diefish

MATH1205H HW7

Exercise 1 首先初等行变换保持了行向量之间的线性关系,因此保证了矩阵的行空间不会改变,从而它的行秩自然也不便。同时对于列秩,这等价于左乘一个一个初等矩阵,此时显然 $ Ax=0 $ 与 $ EAx=0 $ 等价,说明两者有相同的零空间,因此列秩也不边。 对于列变换,和行变换完全同理,也可以证明行秩和列秩都不变。 下面证明矩阵 $ A $ 可以通过初等操作化为 $ \begin{pmatrix}I & 0 \\ 0 & 0\end{pmatrix} $。设 $ \mathrm{rank}(A)=r $,那么我们先通过初等行变换将 $ A $ 化成阶梯矩阵的形式,得到 $ \begin{pmatrix}I_{r} & R \\ 0 & 0\end{pmatrix} $。再对这个结果进行初等列变换,可以直接消除掉 $ R $ 部分中的所有非零元素,并且不影响其他部分。最终就可以化简为 $ \begin{pmatrix}I & 0 \\ 0 & 0\end{pmatrix} $。 Exercise 2 我们需要证明通过任意执行步骤的高斯消元得到的行阶梯矩阵,其主元数量是相同的,从而说明矩阵的秩是一个唯一的值,和消元过程无关。 由于高斯消元本质上就是一系列初等矩阵变换操作,根据第一问我们已经证明了这些操作不会改变矩阵的秩,因此最后得到的阶梯矩阵的秩也不变,最终主元数量就是秩的数量必然相同,等于原来的秩。 Exercise 3 若 $ c=0 $,那么显然有 $$ A\cdot \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} = \mathbf{0} $$ 说明 $ \text{rank}(A)\neq n $,因此 $ A $ 不可逆,矛盾,所以 $ c\neq 0 $。 ...

October 19, 2025 · 8 min · diefish

MATH1205H HW6

Exercise 1 Let $ A $ be an $ n \times n $ matrix. Prove the equivalence between: (i) There is a $ B $ with $ AB = I $. (ii) There is a $ C $ with $ CA = I $. Proof: We show both conditions are equivalent to $ \operatorname{rank}(A) = n $. If there exists $ B $ with $ AB = I $, then $ A $ is surjective, so $ \operatorname{rank}(A) = n $. ...

October 14, 2025 · 10 min · diefish