MATH1205H HW10
Exercise 1 (1) $$ u\cdot v = v\cdot u = \sum_{i=1}^{m} v_{i}w_{i} $$ (2) $$ (u+v)\cdot w = u\cdot w + v\cdot w = \sum_{i=1}^{m} (v_{i}+u_{i})w_{i} $$ (3) $$ cu\cdot v = c(u\cdot v) = \sum_{i=1}^{m} (c\cdot u_{i}v_{i}) $$ (4) $$ u\cdot u = \sum_{i=1}^{m} u_{i}^{2} \geq 0 $$ 若 $ u\cdot u = 0 $,可以得到 $ u_{i}=0 $,从而 $ u=\mathbf{0} $。 Exercise 2 $$ u\perp v \implies u\cdot v = \sum_{i=1}^{m} u_{i}v_{i} = 0 $$ 从而 $$ \begin{align*} \| u+v \| ^{2} & = \sum_{i=1}^{m} (u_{i}+v_{i})^{2} \\ & = \sum_{i=1}^{m} u_{i}^{2} + \sum_{i=1}^{m} v_{i}^{2} + 2\sum_{i=1}^{m} u_{i}v_{i} \\ & = \sum_{i=1}^{m} u_{i}^{2} + \sum_{i=1}^{m} v_{i}^{2} \\ & = \| u \| ^{2} + \| v \| ^{2} \end{align*} $$ ...