MATH1205H HW10

Exercise 1 (1) $$ u\cdot v = v\cdot u = \sum_{i=1}^{m} v_{i}w_{i} $$ (2) $$ (u+v)\cdot w = u\cdot w + v\cdot w = \sum_{i=1}^{m} (v_{i}+u_{i})w_{i} $$ (3) $$ cu\cdot v = c(u\cdot v) = \sum_{i=1}^{m} (c\cdot u_{i}v_{i}) $$ (4) $$ u\cdot u = \sum_{i=1}^{m} u_{i}^{2} \geq 0 $$ 若 $ u\cdot u = 0 $,可以得到 $ u_{i}=0 $,从而 $ u=\mathbf{0} $。 Exercise 2 $$ u\perp v \implies u\cdot v = \sum_{i=1}^{m} u_{i}v_{i} = 0 $$ 从而 $$ \begin{align*} \| u+v \| ^{2} & = \sum_{i=1}^{m} (u_{i}+v_{i})^{2} \\ & = \sum_{i=1}^{m} u_{i}^{2} + \sum_{i=1}^{m} v_{i}^{2} + 2\sum_{i=1}^{m} u_{i}v_{i} \\ & = \sum_{i=1}^{m} u_{i}^{2} + \sum_{i=1}^{m} v_{i}^{2} \\ & = \| u \| ^{2} + \| v \| ^{2} \end{align*} $$ ...

October 27, 2025 · 3 min · diefish

MATH1205H HW9

Exercise 1 (1) 若 $ x \in \mathcal{N}(A) $,说明 $ Ax=0 $,从而一定有 $ BAx=0 $,这就得到了 $ x \in \mathcal{N}(BA) $,因此 $$ \mathcal{N}(A) \subseteq \mathcal{N}(BA) $$ (2) 当 $ \text{rank}(B)=n $,设 $ x \in \mathcal{N}(BA) $,此时有 $ BAx=0 $。由于 $ \text{rank}(B)=n $,因此我们可以得到 $ Ax=0 $,从而 $$ x \in \mathcal{N}(A) $$ 于是必然有 $ \mathcal{N}(A)=\mathcal{N}(BA) $。 如果 $ \mathcal{N}(A)=\mathcal{N}(BA) $,并不能推出 $ \text{rank}(B)=n $。我们可以构造出反例 $$ A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix},\quad B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} $$ 显然这时 $ A=BA $,结论成立,但是 $ B $ 不满秩。 ...

October 26, 2025 · 3 min · diefish

MATH1205H HW8

Exercise 1 先证明行阶梯矩阵中主元列的唯一性。由于初等行变换保持了列向量之间的线性关系,因此如果矩阵 $ A $ 的第 $ j $ 列是前 $ j-1 $ 列的线性组合,初等行变换之后也仍然成立。并且一个列为主元列,当且仅当它不能被前面的列线性表示,所以 $ A_{1} $ 和 $ A_{2} $ 中的主元列位置完全相同。 接着证明简化行阶梯矩阵的唯一性。对于每个主元列 $ j_{k} $,必须化简成单位向量 $ e_{k} $,满足主元为 $ 1 $,其余元素为 $ 0 $,具有唯一性;对于非主元列,可以表示为前面的列的线性组合,所以为 $ 0 $,也具有唯一性。因此简化行阶梯矩阵具有唯一性。 Exercise 2 (1) 我们通过选择 $ W=\text{span}\{ v_{1},v_{2},\dots,v_{n} \} $ 中的一个子集,可以构造出 $ W $ 的一个基。我们依次考虑 $ i=1,2,\dots,n $,如果 $ i=1 $ 或者 $ v_{i} $ 不是前 $ i-1 $ 个向量的线性组合,就选择 $ v_{i} $,这样最终就得到了 $ B=\{ v_{i_{1}},v_{i_{2}},\dots,v_{i_{r}} \} $。 ...

October 21, 2025 · 5 min · diefish

MATH1205H HW7

Exercise 1 首先初等行变换保持了行向量之间的线性关系,因此保证了矩阵的行空间不会改变,从而它的行秩自然也不便。同时对于列秩,这等价于左乘一个一个初等矩阵,此时显然 $ Ax=0 $ 与 $ EAx=0 $ 等价,说明两者有相同的零空间,因此列秩也不边。 对于列变换,和行变换完全同理,也可以证明行秩和列秩都不变。 下面证明矩阵 $ A $ 可以通过初等操作化为 $ \begin{pmatrix}I & 0 \\ 0 & 0\end{pmatrix} $。设 $ \mathrm{rank}(A)=r $,那么我们先通过初等行变换将 $ A $ 化成阶梯矩阵的形式,得到 $ \begin{pmatrix}I_{r} & R \\ 0 & 0\end{pmatrix} $。再对这个结果进行初等列变换,可以直接消除掉 $ R $ 部分中的所有非零元素,并且不影响其他部分。最终就可以化简为 $ \begin{pmatrix}I & 0 \\ 0 & 0\end{pmatrix} $。 Exercise 2 我们需要证明通过任意执行步骤的高斯消元得到的行阶梯矩阵,其主元数量是相同的,从而说明矩阵的秩是一个唯一的值,和消元过程无关。 由于高斯消元本质上就是一系列初等矩阵变换操作,根据第一问我们已经证明了这些操作不会改变矩阵的秩,因此最后得到的阶梯矩阵的秩也不变,最终主元数量就是秩的数量必然相同,等于原来的秩。 Exercise 3 若 $ c=0 $,那么显然有 $$ A\cdot \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} = \mathbf{0} $$ 说明 $ \text{rank}(A)\neq n $,因此 $ A $ 不可逆,矛盾,所以 $ c\neq 0 $。 ...

October 19, 2025 · 8 min · diefish

MATH1205H HW6

Exercise 1 Let $ A $ be an $ n \times n $ matrix. Prove the equivalence between: (i) There is a $ B $ with $ AB = I $. (ii) There is a $ C $ with $ CA = I $. Proof: We show both conditions are equivalent to $ \operatorname{rank}(A) = n $. If there exists $ B $ with $ AB = I $, then $ A $ is surjective, so $ \operatorname{rank}(A) = n $. ...

October 14, 2025 · 10 min · diefish

MATH1205H HW5

Exercise 1 Let $ S \subseteq V $ be a subset of vectors in a vector space $ V $. A finite subset $ S' \subseteq S $ is maximally linearly independent in $ S $ if $ S' $ is linearly independent, and for any $ v \in S \setminus S' $ the set $ S' \cup \{v\} $ is not linearly independent. Prove that: (i) $ S' $ is maximally linearly independent in $ S $ if and only if $ S' $ (viewed as a sequence of vectors) is a basis for $ \operatorname{span}(S) $. ...

October 9, 2025 · 7 min · diefish

MATH1205H HW4

Exercise 1 Give a basis for the vector space $ M_{m\times n}(\mathbb{R}) $ consisting of all $ m \times n $ matrices. A basis consists of the matrices $ E_{ij} $ for $ 1 \leq i \leq m $ and $ 1 \leq j \leq n $, where $ E_{ij} $ has a 1 in the $ (i,j) $-th position and 0 elsewhere. Exercise 2 Give a basis for $ V = \mathbb{R}^+ = \{x \mid x \in \mathbb{R} \text{ with } x > 0\} $ with $ x \oplus x' = x \times x' $ and $ c \otimes x = x^c $. ...

October 7, 2025 · 7 min · diefish

MATH1205H HW3

Exercise 1 (Multiplication of block matrices). Consider two block matrices $$ A = \begin{pmatrix} A_{11} & \cdots & A_{1t} \\ \vdots & \ddots & \vdots \\ A_{p1} & \cdots & A_{pt} \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} B_{11} & \cdots & B_{1q} \\ \vdots & \ddots & \vdots \\ B_{t1} & \cdots & B_{tq} \end{pmatrix} $$ Moreover, for every $ i \in [p] $, $ j \in [t] $, and $ l \in [q] $ the number of columns of $ A_{ij} $ is equal to the number of rows of $ B_{jl} $. In particular, $ A_{ij} \cdot B_{jl} $ is defined. Prove that $$ A \cdot B = \begin{pmatrix} C_{11} & \cdots & C_{1q} \\ \vdots & \ddots & \vdots \\ C_{p1} & \cdots & C_{pq} \end{pmatrix} $$ with $$ C_{il} = \sum_{j \in [t]} A_{ij} B_{jl} $$ for any $ i \in [p] $ and $ l \in [q] $. ...

September 30, 2025 · 7 min · diefish

MATH1205H HW2

Exercise 1 What rows or columns or matrices do you multiply to find the second column of $ AB $ ? the first row of $ AB $ ? the entry in row $ 3 $, column $ 5 $ of $ AB $ ? the entry in row $ 1 $, column $ 1 $ of $ CDE $ ? To find the second column of $ AB $, we multiply matrix $ A $ by the second column of matrix $ B $. ...

September 29, 2025 · 7 min · diefish

MATH1205H HW1

Exercise 1 Let $ f:\mathbb{R}\to\mathbb{R} $ be a function. Prove that the following are equivalent: (i) There is a constant $ a\in\mathbb{R} $ such that for every$ x\in\mathbb{R} $ we have$ f(x)=ax $. (ii) For all $ x_1,x_2,c,x\in\mathbb{R} $ we have $ f(x_1+x_2)=f(x_1)+f(x_2) $ and $ f(cx)=c\,f(x) $. (i ⇒ ii) Assume there exists $ a\in\mathbb{R} $ such that $ f(x)=a x $ for all $ x\in\mathbb{R} $ . Then for any $ x_1,x_2,c,x\in\mathbb{R} $ , ...

September 24, 2025 · 4 min · diefish