MATH1205H HW5
Exercise 1 Let $ S \subseteq V $ be a subset of vectors in a vector space $ V $. A finite subset $ S' \subseteq S $ is maximally linearly independent in $ S $ if $ S' $ is linearly independent, and for any $ v \in S \setminus S' $ the set $ S' \cup \{v\} $ is not linearly independent. Prove that: (i) $ S' $ is maximally linearly independent in $ S $ if and only if $ S' $ (viewed as a sequence of vectors) is a basis for $ \operatorname{span}(S) $. ...