Lect3-Conditional Probability
Introduction 条件概率指一个事件在另一个事件发生的条件下发生的概率,用记号 $ \mathbb{P}(A|B) $ 表示,仅在 $ \mathbb{P}(B)>0 $ 时有定义: $$ \mathbb{P}(A|B) = \dfrac{\mathbb{P}(A \cap B)}{P(B)} $$ 可以写成 $$ \mathbb{P}(A \cap B) = \mathbb{P}(B)\cdot \mathbb{P}(A|B) $$ 对于 $ n $ 个事件,连续使用上式,即可得到 $$ \mathbb{P}\left( \bigcap_{i=1}^{n}A_{i} \right) = \prod_{k=1}^{n} \mathbb{P}\left( A_{k}\bigg|\bigcap_{i=1}^{k-1}A_{i} \right) $$ 这个式子被称为 链式法则。 Independence 对于事件 $ A,B $,如果 $ \mathbb{P}(A\cap B)=\mathbb{P}(A)\mathbb{P}(B) $,或者等价地 $ \mathbb{P}(A|B)=\mathbb{P}(A) $,那么我们称 $ A $ 和 $ B $ 是独立的。这表明 $ A $ 或 $ B $ 自己是否发生对对方是否发生没有影响。 ...